

Bereich Neurodegeneration des Auges Forschungsinstitut für Augenheilkunde, Department f. Augenheilkunde Eberhard-Karls-Universität Tübingen Schleichstr. 4/3, 72076 Tübingen

Prof. Dr. med. Dipl.-Ing. Mathias Seeliger

Formation of vision in the outer retina

May 17, 2010

Position of the retina within the eye

OCT in vivo images of the retinal layers

May 17, 2010

May 17, 2010

Formation of vision in the outer retina

The photoreceptors (rods & cones)

Wristaff: Engel & Palczewski, Program (Parket Ever S2009) Protorecoptor Protor

Photoreceptor outer segments

May 17, 2010

Photoreceptor distribution

Mustafi, Engel & Palczewski, Prog Ret Eye Res 2009

Photoreceptor system development

Mustafi, Engel & Palczewski, Prog Ret Eye Res 2009

Diagnostic techniques:

Electroretinography (ERG)

Measurement of retinal function (ERG)

Formation of vision in the outer retina

Measurement of retinal function (ERG)

Rods Cones 2 MARIN COMM 1111 1111 Horizontal cells 3 Scotopic Bipolar cells 5 Amacrine cells Ganglion cells 40 ms /div.

May 17, 2010

modified from Wässle 2004

May 17, 2010

Formation of vision in the outer retina

Normal	due due fou de du due due fou de due due due de due due due due due due due due due due		
M. Stargardt		a contraction of the second se	
Retinitis Pigmentosa			

rho-/-: knock-out of the rod opsin

Formation of vision in the outer retina

May 17, 2010

Formation of vision in the outer retina

May 17, 2010

Gnat1 α ^{-/-}: knock-out of the rod transducin α -subunit

 \Rightarrow rod photoreceptor function loss

Course of cone degeneration revealed by cross-breeding with RG-GFP transgenics

Formation of vision in the outer retina

May 17, 2010

Cnga3-/-

causing achromatopsia (total colorblindness)

Lack of cGMP-gated channels in cones

May 17, 2010

Formation of vision in the outer retina

The role of Vitamin A for vision

Pathophysiology of LCA due to RPE65^{-/-} deficiency

article

🚧 © 1998 Nature America Inc. • http://genetics.nature.com

Rpe65 is necessary for production of 11*cis*-vitamin A in the retinal visual cycle

T. Michael Redmond¹, Shirley Yu¹, Eric Lee², Dean Bok³, Duco Hamasaki⁴, Ning Chen⁵, Patrice Goletz⁵, Jian-Xing Ma⁵, Rosalie K. Crouch⁵ & Karl Pfeifer²

Mutation of *RPE65* can cause severe blindness from birth or early childhood, and RPE65 protein is associated with retinal pigment epithelium (RPE) vitamin A metabolism. Here, we show that *Rpe65*-deficient mice exhibit changes in retinal physiology and biochemistry. Outer segment discs of rod photoreceptors in *Rpe65^{-/-}* mice are disorganized compared with those of *Rpe65^{+/+}* and *Rpe65^{+/-}* mice. Rod function, as measured by electroretinography, is abolished in *Rpe65^{-/-}* mice, although cone function remains. *Rpe65^{-/-}* mice lack rhodopsin, but not opsin apoprotein. Furthermore, all-*trans*-retinyl esters over-accumulate in the RPE of *Rpe65^{-/-}* mice, whereas 11-*cis*-retinyl esters are absent. Disruption of the RPE-based metabolism of all-*trans*-retinyl esters to 11-*cis*-retinal thus appears to underlie the *Rpe65^{-/-}* phenotype, although cone pigment regeneration may be dependent on a separate pathway.

May 17, 2010

letter

© 2001 Nature Publishing Group http://genetics.nature.com

New views on RPE65 deficiency: the rod system is the source of vision in a mouse model of Leber congenital amaurosis

Mathias W. Seeliger^{1,*}, Christian Grimm², Fredrik Ståhlberg^{1,3}, Christoph Friedburg¹, Gesine Jaissle¹, Eberhart Zrenner¹, Hao Guo¹, Charlotte E. Remé², Peter Humphries⁴, Franz Hofmann⁵, Martin Biel⁶, Robert N. Fariss⁷, T. Michael Redmond⁸ & Andreas Wenzel^{2,*}

Published online: 20 August 2001, DOI: 10.1038/ng712

May 17, 2010 Formation of vision in the outer retina Retinal vitamin A deficiency: RPE65 R91W mutant mouse characteristics Table 1. Retinoid analysi **R91W** Rpe65-/wt 11-cis-retina Retinyl este $\begin{array}{c} 30.6 \pm 5.6 \\ 39.2 \pm 5.0 \\ 34.9 \pm 4.6 \\ 106.2 \pm 27.2 \end{array}$ Wild-type R91W 420.7 ± 34.5 1542 18.2 ± 4.8 622 9 **R91W** Rpe65^{-/-} wt olleve + SD (n = 3). Are in The equivalent light effect on the rod ERG Summary of effects in R91W mutants RPE65⁴ ž 350 wildtype amplitude 300 568 ž 250 kground light 200 75 flicker ERG 150 **Ficket** Rpe65 10 SHZH 50 equivalent ckground ligh 10 100 1000 10000 100000 Flash intensity [mcd*s/m²] Flash intensity [mcd*s/m²]

Electroretinography (ERG) in RPE65 R91W mutant mice

Scotopic flash ERG intensity series

Responses @ 1.0 log (cd*s/m²) WT R91W Homo R91W Homo Rho KO Rho KO Rpe65 KO Rho KO Scotopic flash 700 L WT т 5 600 ĩΠ b-wave amplitude 500 R91W homo 400 300 Rho KO 200 **R91W** 100 Rho KO Rpe65 KO 0 Rho KO -2 -3 -0 1 Stimulus intensity [log (cd*s/m2)]

Formation of vision in the outer retina

Photopic flash ERG intensity series

Responses @ 3.5 log (cd*s/m²) Mm WT **R91W Homo** R91W Homo Rho KO Rho KO Rpe65 KO Rho KO Photopic flash 500 Į. 400 **R91W** homo b-wave amplitude w 300 Rho KO 200 R91W homo Rho KO 100 Rpe65 KO Rho KO 0 0 Stimulus intensity [log (cd*s/m²)]

May 17, 2010

Too much light:

Light damage

Formation of vision in the outer retina

May 17, 2010

Formation of vision in the outer retina

May 17, 2010

OCT

Non-invasive testing of retinal morphology

Histology-equivalent images realistic

Allows sequential tests of the same individuals

Light damage

Comparison of OCT with SLO & histology at 1 wk post exposure

Models helping to understand retinal function:

HCN1 channel mutants

Formation of vision in the outer retina

May 17, 2010

Formation of vision in the outer retina

May 17, 2010

The flicker fusion frequency is lowered above HCN1 threshold.

Formation of vision in the outer retina

May 17, 2010

Models helping to understand retinal function:

Modelling ERG signals

