

HelmholtzZentrum münchen German Research Center for Environmental Health

Protein and Proteome Analysis by Mass Spectrometry

Karsten Boldt

University of Tübingen Centre for Ophthalmology Medical Proteome Center <u>karsten.boldt@uni-tuebingen.de</u>

October 11th 2010, Tübingen

What is the proteome?

The proteome

The Proteome (Keith Williams and Marc Wilkins, 1994)

"The protein equivalent to the genome"

The proteome describes the entirety of proteins of an organism at a **certain point in time and in a certain state**.

In contrast to the genome, the proteome is not static but highly dynamic

One species,

the same genome, different proteome

The proteome influenced by the environment

Why do we need proteome analysis?

Correlation with RNA expression

Scatter plot of mRNA versus cognate protein expression ratios (log10) of MPRO:EML.

- Protein expression levels are strongly regulated by post-transcriptional regulation
- RNA expression levels can only capture around 40% of variation in protein expression

→ Protein expression analysis can give valuable additional information

Analysis of sub-proteomes

> Proteomics enables the analysis of sub-proteomes like:

- Proteomes of organelles (mitochondria, cilia, outer segments of photoreceptors,...)
- Body fluids
- Protein complexes
- ▶ ...
- > Analysis of post-translational modifications:
 - Phosphorylation
 - Acetylation
 - Sumoylation
 - ≻ ...

How can we analyse the proteome and what are the challenges?

Analysing the proteome

> Methods for proteome analysis:

Gel based approaches

- > Labour intensive, hard to standardize
- > MS necessary for protein identification

Gel-free, MS-based approaches

- > Standardization possible
- > Automation possible
- ➢ Great improvement in sensitivity, speed and resolution within the last 10 years
- Automated quantification possible

→ Gel-free, MS-based approaches are highly suitable for proteome analysis

Major challenges in proteom analysis

- > High complexity:
 - ➤ ~ 20 000 genes
 - > 50 000 100 000 proteins
- Modifications lead to even higher complexity
- Huge dynamic range (10 orders of magnitude)

Banscheff et al., Anal. Bioanal. Chem., 2007

Protein identification by MS: The basics

Bottom-up protein analytics by MS

Why do we need proteolytic cleavage

- Molecular weight of proteins varies greatly (10-500 kilo Dalton)
- MS machines are mainly suited for the analysis of molecules of up to some Dalton
- → Proteolytic cleavage produces peptide fragments making the high throughput analysis and identification by MS possible
- \rightarrow Major disadvantage: Even higher complexity of the sample

Bottom-up protein analytics by MS

Components of a MS: Ion source

Components of a MS: Ion source

Components of a MS: Mass analyzer

Bottom-up protein analytics by MS

Identification by Peptide Mass Fingerprint

Identification by fragment ions

The masses of all the pieces give an MS/MS spectrum

Identification by fragment ions

- Use the fragment ion masses as specific pieces of the puzzle to help piece the intact molecule back together
- ➢ Several thousands of peptides/analysis → highly complex job
- → Search algorithms make this job

Identification by fragment ions

в	B Ions	B+2H	B-NH3	B-H2O	AA	Y Ions	Y+2H	Y-NH3	Y-H2O	Y
1	115.1		98.0		N	2,270.1	1,135.5	2,253.0	2,252.1	19
2	228.1		211.1		I	2,156.0	1,078.5	2,139.0	2,138.0	18
3	357.2		340.2	339.2	E	2,042.9	1,022.0	2,025.9	2,024.9	17
4	470.3		453.2	452.3	L	1,913.9	957.5	1,896.9	1,895.9	16
5	583.3		566.3	565.3	I	1,800.8	900.9	1,783.8	1,782.8	15
6	743.4	372.2	726.3	725.4	C+57	1,687.7	844.4	1,670.7	1,669.7	14
7	871.4	436.2	854.4	853.4	Q	1,527.7	764.4	1,510.7	1,509.7	13
8	1,000.5	500.7	983.5	982.5	E	1,399.6	700.3	1,382.6	1,381.6	12
9	1,114.5	557.8	1,097.5	1,096.5	N	1,270.6	635.8	1,253.6	1,252.6	11
10	1,243.6	622.3	1,226.5	1,225.6	E	1,156.6	578.8	1,139.5	1,138.5	10
11	1,300.6	650.8	1,283.6	1,282.6	G	1,027.5	514.3	1,010.5	1,009.5	9
12	1,429.6	715.3	1,412.6	1,411.6	E	970.5	485.8	953.5	952.5	8
13	1,543.7	772.3	1,526.6	1,525.7	N	841.5	421.2	824.4	823.4	7
14	1,658.7	829.9	1,641.7	1,640.7	D	727.4	364.2	710.4	709.4	6
15	1,755.7	878.4	1,738.7	1,737.7	Р	612.4		595.4		5
16	1,854.8	927.9	1,837.8	1,836.8	¥	515.3		498.3		4
17	1,967.9	984.5	1,950.9	1,949.9	L	416.3		399.2		3
18	2,096.0	1,048.5	2,078.9	2,077.9	Q	303.2		286.2		2
19	2,270.1	1,135.5	2,253.0	2,252.1	R	175.1		158.1		1

In real life (almost): MSMS on an Orbitrap

The Orbitrap

- 1. Ions are stored in the Linear Trap
- 2. are axially ejected
- 3. and trapped in the C-trap
- 4. they are squeezed into a small cloud and injected into the Orbitrap
- 5. where they are electrostatically trapped, while rotating around the central electrode and performing axial oscillation

606,30

600

700

800

510.33

500

berhard-Karls-Universitä

10-

0

.24 297.17

300

400

900

959.76

m/z

1000

1100

1558.28 1646.16

1600

1412.79

1400

1384.10

1300

1200

1512.71

1500

🕼 Scaffold Viewer - Samples - 20101007_Dorus													
Ele Edit View Experiment Export Quant Window Help													
	Display Options: Number of Unique Peptides 🔽 Req Mods: No Filter 🔽 Search:												
	BioSar	iample 1											
	■ over 95% "Universited Proteins (132) = ⊕ = ⊕ = ↓		66										
and the second		w (F (F 001 (F 0	w (EC 00156										
	20% to 49% 41/10 A 49% 20% to 49%	5A.rrs 56b.rr 06b.r 17a.r 17a.r 108.rrs 08.rrs 08.rrs	aw (F										
Samples		RMNIC Rash Rash RMNIC wash RMNIC wash wash RMNIC wash wash wash wash wash wash wash wash	. EB1.r Wash Wash										
3/1													
1 m													
Proteins	# [월[&] dentified Proteins (132) 정 명 물 문 금 정 영 영 영 영 영 영 영 영 영 명 명 명 명 명 명 명 명 명 명												
	C → CDA FLI35400, highly similar to	12 14 2 8	4										
	3 ⊻ Tubulin beta polypeptide n=1 Tax(55)F53 49 149 ★ 17 2 2 7 4 49 CRAbinding protein 9 n=1 Tax+(95)F53 78 149 ★ 13 1	12 12 2 5 11 2											
Similarity	5 ♥ UP10001D3806F related cluster n UP10001D3 49 00 ★ 32 7 5 4 2 6 ♥ cm004 D3806F related cluster n UP10001D3 49 00 ★ 32 7 5 4 2	10											
	7 💟 O Propionyl-CoA carboxylase alpha P05165 (+) 77 10 a	10	≣										
	8 ⊻ CDVA FLD8802, highly similar to … 840L503 (+1) 62/04 9 9 9 0 CTC-complex protein 1 subuit beta858177 (+2) 57/04 9	8 4											
Quentifi	0 ♥ cDNAFL37398 fis, clone BRAMY2 B3KT06 46 №3 ★ 11 2 2 4 2 1 ♥ cTscharm 2 dr WD reneat-containin94970.2 * 70 №3 16	7 2 2 11 5 2 2 2 7 6											
Quantity	2 C cDNA FLJS4209 n=1 Tax=Home s B4DZVT 17/0a	7											
	3 (v) Protein L200711 n=1 (ax=1mmoysmvu2) 27/03 ★ 8 4 (v) A0P/A1P transformes 2 n=1 Tax=pos141 (+1) 33/03 ★ 8 5	6 5 2											
	5 ♥ cDNAFL355427, highly similar to 58722175 (+5) 113 № 3 6 ♥ cBitin rathoxylage = a 4 Tax=Hom101386 (+1) 266 № 3	6 5											
Publish	7 CV Putative uncharacterized proteinA6AFL1 (+5) 55/00 a	6 5											
	o ⊻ CUM FLD3319, http://similar.to.l44U#171 (1-3) 30 W-3 9 ♥ Propionyl Conceryme & Carboxylas.a57224 (1-3) 61 M-3	5											
	0 V cDNA FLJ78433, highly similar to … A842283 (+2) 60 kba 2 2 2	5 4											
Statistics	2 💟 CDNA FLI75516, highly similar to XA8K674 (+4) 68 Юз 5	5 5 3											
	3 Ψ Microtuble-associated protein R [159] 30 109 2 2 3 5 2 3 4 Ψ Clongation factor 1-alphan = 1 Tas. B40NE(0+14, rd 30/0) 3 5 3	5 3 3 2 3 5 3 3 2 3	33 19 14										
	15 ♥ O T-complex protein 1 subunit delta972910 52 №3 2	4 5											
	T I Akakin-2-like protein n=1 Tax=R_08WM7 113Юa 2	3											
	8 ✓ Putative uncharacterized proteinA6NB28 (+6) 72 № 3 5 2 5 4 5 6 2 5 6 6 2 4 5 6 9 ✓ Isoform 2 of ProteinMONB200 (-10) 91871-2 11 № 3	3 5 5 6 4 6 6 6 3 5 5 6 3	4 5										
	0	3 2											
	1 2 CUM FLASO IS IIS, Clone UTRESZU. BJARLB (+1) 25 W3 2 V Probable APP-dependent RNA heli26196 54 №3	3											
	13 ♥ CDNA,FLJS5068,hiphysimilar to B2RAR6 (+8) 71 №3 ★ 14 ♥ CPVruvär erahosystase mitorhond	3											
	5 Ø Protein arginine methyltransfera. ABM291 (+3) 71 kDa 4 12	3 9 8											
	¹⁰ ⊆ CDNA FLJ7(28), highly similar to … ABK599 (+9) 43/0-9 7 ⊆ CDNA FLJ7(28), highly similar to … B2K88 (+4) 40/0-9 7 ⊆ CDNA FLJ9(45), highly similar to … B2K88 (+4) 40/0-9	2											
	18 🕅 🖓 FabOX117 Light Chain Fragment n UP1000178 24 HDa \star 🙎 2	2 2 3	<u> </u>										
Protein Information:													
	Biological Sample:												
		Sample Category:											
		Sample Description:											
132 Proteins	Preferred Accession Number:	MS/MS Sample:											
0.2% Prot %FDR 4050 Spectra	lo 2% hrot %PDR does et al. (MS/MS Sample Notes:												
4400 yabetra													

Protein quantification by MS

MS-based quantification: Principle

MS-based quantification: an overview

Banscheff et al., Anal. Bioanal. Chem., 2007

MS-based quantification by SILAC

MS-based quantification by ICPL

Software based quantification and identification

MSQuant: Mortensen et al. J Proteome Research, 2010 ICPLQuant: Brunner et al. Proteomics, 2010 Proteome Discoverer:

ThermoScientific

Andreas Vogt

Norbert Kinkl Johannes Gloeckner Ronald Roepman

Protein complex analysis of Lebercilin

Mutations in the lebercilin gene cause LCA

- Autosomal recessive
- Severe visual impairment shortly after birth
- Loss of photoreceptors outer segments

- Ronald Roepman/ Anneke den Hollander
- Chris Inglehearn
- Irene Maumenee

- \rightarrow P493TfsX1 and Q297X
- → P384QfsX17
- → 1598-bp Promotor Deletion im *LCA5* Promoter

Den Hollander et al. Nat Genet. 2007 Jul; 39(7): 889-95.

What does Lebercilin do?

Detection of specific complex components by quantitative protein complex analysis

Detection of specific complex components

Enrichment of specific interactors

Confirmation of Lebercilin-IFT interaction

Intraflagellar transport in photoreceptors

Characterization of the IFT complex B in HEK293T cells

Analysis of the lebercilin complex by SF-TAP

> Den Hollander et.al.; Nat. Genet. 2007 Jul; 39(7):889-95

The lebercilin-IFT protein complex

Which effect do mutations have on the complex?

Protein complex alterations due to mutation

Protein complex comparison

JKT

Dept. Protein Science HelmholtzZentrum münchen German Research Center for Environmental He

Impact of mutations on the Lebercilin complex

Loss of complex components due to mutation

Science

n Research Center for Envi

Loss of Lebercilins's function \rightarrow Impaired IFT \rightarrow LCA

WT lebercilin

Mutated lebercilin

Norbert Kinkl

Andrea Meixner

Johannes Gloeckner

LRRK2 auto-phosphorylation and protein complex analysis

LRRK2 mutations associated with Parkinson's disease

For review see: Taylor et al., 2006

Analysis of LRRK2 autophosphorylation by MS

Analytical strategy

Gloeckner, Boldt et al., J. Proteome Res., 2010

Multi-Stage-Activation for phospho-peptides

MSA: better fragment pattern allows mapping of the phosphorylated residue!

Distinct clusters of phosphorylation

Distinct clusters of phosphorylation at the GTP binding pocket of the Roc domain

residues mapped unambiguously

- alternative sites (multiphosphorylation possible)
- PD-associated mutation R1441C

GTP binding pocket

QUICK LRRK2 interaction screen

Quantitative Immunoprecipitation combined with knock-down

Quantitative immunoprecipitation combined with knockdown (QUICK)

Science

Dept. Protein

LRRK2 interacts with proteins associated with the actin cytoskeleton

Collaboration with Jarrod A. Mato (Harvard Medical School)

(http://blaispathways.dfci.harvard.edu/palette.html)

Knock down of LRRK2 leads to impaired neurite outgrowth in primary VM cultures

Acknowledgements

Tübingen and München

Andrea Meixner	Johannes Gloeckner
Norbert Kinkl	Andreas Vogt
Hakan Sarioglu	Annette Schumacher
Silke Becker	Marius Ueffing
Sandra Helm	Ludwig Wiesent

Nijmegen

Ronald Roepman Dorus Mans Jeroen van Reeuwijk Stef Letteboer Anneke den Hollander

