Gene expression analyses in the eye and ear: recent findings and future possibilities

Marita Feldkaemper

Centre for Ophthalmology, Institute for Ophthalmic Research Tuebingen, Germany

Signaling pathways during eye growth regulation

modifying visually induced signals

How can the best targets be identified ?

- find new targets by screening for genes that respond to experimentally induced myopia
- optimize compounds that act on already known targets

Different levels of visual and genetic control

Eye growth is controlled at several levels

Transcription of eukaryotic genes

RNA Polymerase I transcribes ribosomal RNA (rRNA).

RNA Polymerase II transcribes messenger RNA (mRNA) and most small nuclear RNAs (snRNAs). RNA Polymerase III transcribes transfer RNA (tRNA) and other small RNAs (including the small 5S rRNA).

Types of RNA

About 97% of the transcriptional output is non-protein-coding in eukaryotes.

Non-coding RNAs involved in translation

transfer RNA (tRNA); each kind of tRNA carries (at its 3' end) one of the 20 amino acids ribosomal RNA (rRNA):18S rRNA, 28S, 5.8S, and 5S rRNA

Non-coding RNAs involved in gene regulation

micro RNAs (miRNA, single stranded, 21-22 nucleotide): can down-regulate gene expression small interfering RNA (siRNA, double-stranded, 20-25 nucleotides), involved in RNA interference pathway.

long noncoding RNAs that regulate genes.

Protein coding RNAs

Messenger RNA (mRNA) carries information about a protein sequence to the ribosomes. mRNA may contain regulatory elements itself, in the 5` untranslated region or 3`untranslated region. These cis-regulatory elements regulate the activity of that mRNA. The untranslated regions can also contain elements that regulate other genes.

(not complete)

Transcriptome

Transcriptome definition:

The **transcriptome** is the set of all RNA molecules, including mRNA, rRNA, tRNA and other non-coding RNA.

The term can be applied to the total set of transcripts in a given organism, or to the specific subset of transcripts present in a particular cell type.

The transcriptome can vary with external environmental conditions.

Because it includes all *mRNA* transcripts in the cell, the transcriptome reflects the genes that are being actively expressed at any given time, with the exception of mRNA degradation phenomena such as transcriptional attenuation.

Transcriptomics is the branch of molecular biology that deals with the study of messenger RNA molecules produced in an individual or population of a particular cell type.

Control of the expression of the mRNA genes

Transcriptional initiation

This is the most important mode for control of eukaryotic gene expression.

Transcription start site

RNA polymerase II binds. Pol II is a complex of different proteins.

The basal promoter

The basal promoter contains a sequence of 7 bases (TATAAAA) called the **TATA box** and an initiator element (Inr).

The basal promotor

The basal promoter is bound by a large complex of some 50 different proteins, including **Transcription Factor IID (TFIID)**, which is a complex of **TATA-binding protein (TBP)**, which recognizes and binds to the TATA box ; 14 other protein factors which bind to TBP — and each other — but not to the DNA; **Transcription Factor IIB (TFIIB)** which binds both the DNA and pol II.

The basal or core promoter is found in all protein-coding genes.

The upstream enhancer/promoter

Structure and associated binding factors differ from gene to gene.

Regulatory sequences are predominantly located upstream (5') of the transcription initiation site, although some elements occur downstream (3') or even within the genes themselves. The **number** and **type** of regulatory elements to be found varies with each mRNA gene. **Different combinations** of transcription factors also can exert differential regulatory effects upon transcriptional initiation.

Various cell types each express **characteristic combinations** of transcription factors, this is the **major mechanism for cell-type specific regulation** of mRNA expression.

Methods used in transcriptomics studies

Analysis of induced gene expression changes

- PCR and real-time PCR
- Northern blot
- In-situ hybridisation
- Oligonucleotide microarrays
- Next generation sequencing

Measuring induced changes in transcription rate of a (known) gene in the visual system and the ear

Examples for induced changes in the eye and ear:

Plus lens-wear - decreased ocular growth

Margaret Lomax et al. (2001). Noise & Health 3 :19-35.

When noise exposure kills hair cells in birds, these cells can regenerate and hearing will recover. In mammals, however, the hair cell loss, and resulting hearing loss, is permanent.

- invented by Dr. Kary Mullis 1983 (awarded with the Nobel prize 1993)
- makes it possible to produce very high numbers of copies of a sequence
- clever tricks, using repetitive "melting" of cDNA

temperature raised to 94-96° C

RNA extraction, conversion into cDNA with reverse transcriptase STEP 1: heating and denaturation

- Problems of standard PCR: not exact quantification possible
- Amplification functions may have different shapes and they saturate

Quantitative methods:

a) Northern blot

b) Real-time PCR

Quantitative measurement of RNA: Northern Blot

area ~ amount RNA

Northern Blot: examples of results

After 6 hours with positive lenses, glucagon mRNA is increased (Feldkaemper et al, IOVS 41, 1623-1628, 2002).

- Advantages: additional information about the size of the mRNA transcripts
- Disadvantages: need of high amount of RNA

Real Time Polymerase Chain Reaction (real-time PCR)

Real Time Polymerase Chain Reaction (real-time PCR)

quantitative Real Time PCR: thermocycler with integrated photometer

Real time Polymerase Chain Reaction (real-time PCR)

"on-line" measurement of the increase in copies of the target sequence

Real Time Polymerase Chain Reaction (real-time PCR)

- Advantages only very low amount of RNA/cDNA is needed (1 ng) quick
- Disadvantages: relatively expensive

Time course problem

 \bigcirc

Localizing the transcript in the tissue

Localisation of mRNA transcripts: In-situ hybridisation

(i.e. glucagon receptor)

In-situ hybridisation: the chicken glucagon receptor

In-situ hybridisation: the chicken glucagon receptor

The scale bar represents 100 μ m.

- (A) Glucagon receptor expression after injection of water, antisense probe. (B) Same section as in (A) labelled with the sense probe.
- (B) (C) Glucagon receptor expression after injection of a glucagon antagonist.
 - (D) Same section as in(C) labelled with the sense probe.

Searching for new genes that are controlled by visual experience (e.g. defocus) or hearing loss

Microarray Workflow

Core principle behind microarrays is hybridization between two DNA strands

<u>**Outcome:**</u> Relative signal intensities for each transcript \rightarrow Correlated to mRNA levels in the samples

Hybridization of the target to the probe

Microarray Technique (Affymetrix chips)

Microarray technique - increase in detection reliability with expression rate

log-based expression rate

after Robert Williams, Memphis

Microarray Workflow

Statistics: correction for multiple testing. Threshold-setting (fold-cl

Microarray Workflow

- Canonical pathway analysis: e.g. interferon signalling, glutamate receptor signalling
- <u>Network analysis</u>: creating large and highly complex graphic representations of cellular and molecular processes, and the integration of a variety of biological data, including RNA expression. Information is based on manually created databases of interactions, and metabolic and signalling pathways for different spe

Databases

http://www.ncbi.nlm.nih.gov/geo/

Gene expression omnibus

	Comparate Counce_vi_pino_t	
	GSM109465: Cochlea_WT_9mo_5	
	GSM109466; Cochlea_WT_9mo_2	10
	GSM109467: Cochlea_D257A_9mo_1	
2: GDS3028 reco	rd: Age-related hearing loss model: cochlea [Mus musculus]	GEO Profiles, Links
Summary:	Analysis of cochleas of 7 and 36 week old DBA/2J animals. The DBA/2J animal suffers from age-related hearing loss (AHL), a progressive disease characterized by an age-associated loss of hair cells and spiral ganglion cells in the cochlea. Results provide insight into the molecular basis of AHL. Parent Platform: GPL339 Reference Series: GSE6045	
Type:	Expression profiling by array, count	
Subsets:	2 age, 2 disease state sets.	
Supplementary Files:	CEL download	
Samples:	6	
	GSM140222: Cochlea DBA2J 7 weeks 1	
	GSM140223: Cochlea DBA2J 7 weeks 2	
	GSM140224: Cochlea DBA2J 7 weeks 3	
	GSM140225: Cochlea DBA2J 36 weeks 1	
	GSM140226: Cochlea DBA2J 36 weeks 2	
	GSM140227: Cochlea DBA2J 36 weeks 3	
3: GDS2681 reco	rd: Caloric restriction effect on aged cochlea [Mus musculus]	GEO Profiles, Links
Summary:	Analysis of cochleas of 15 month old C57BL/6 (B6) animals on a calorie restricted diet. The B6 strain is a model of age-related hearing loss or presbycusis. Caloric restriction (CR) prevents late-onset presbycusis in B6. Results provide insight into the molecular basis of this effect of CR. Parent Platform: GPL1261 Reference Series: GSE4786	
Type:	Expression profiling by array, count	
Subsets:	2 age, 2 protocol sets.	
Supplementary Files:	CEL download	
Samples:	9	
an 1993 (1997)	GSM108106: Cochlea_YC_4mo_1	
		P-92

Gene expression omnibus

ど GEO Acce	ession viewer ·	- Mozilla Firefox	:												_ 8 ×
Datei Bear	rbeiten <u>A</u> nsich	it <u>C</u> hronik <u>L</u> es	sezeichen E;	<u>x</u> tras <u>H</u> ilfe											
$\langle \rangle \rangle$	- C ×	🔬 😒 ht	ttp://www.ncb	oi.nlm.nih.gov/geo/c	juery/acc.cgi?acc=G	5M140222						☆ - 😵	▼ screenshot		\mathcal{P}
🔎 Meist 🔝	🛯 news [🔀 KE	GG 📄 sektion [📄 123 😼 E	Ecosia 🚥 myopia	🚼 Mail 🚺 GO [🐝 webmail	🔀 UCSC 🕫 Onto	il. 🍝 YFG	🌲 leo	🖞 UniTü 😒 PubM	S Entrez	3 Gene 💈 Hon	nol 💈 Map Viewer	😒 analysis 🧕	ihop »
W SYBR Gr	reen I - Wikipedia	a, the free enc	🖂 😒 GEC) Accession view	er 🗵	S GDS	Cluster Analysis		W	/ Screenshot – Wikipe	dia	× +			-
		Source Nam	ie.	RNA											-
		Organism		Mus musculus											
		Characterist	tics	Strain: DBA/2J Gender: male Age: 7-week-o Tissue: cochlea	mice Id										
		Biomaterial	provider .	JAX											
		Treatment p	protocol	To identify gen was compared of nine pairwis	es associated v to each 36-we e comparisons.	vith AHL, ek-old sai	each 7-week-old mple (n = 3), ge	l sample (i inerating a	n = 3) a total						
		Growth prot	tocol .	All mice were the the Univer provided a non	raised under 12 rsity of Tokyo-a purified diet and	2:12 dark, approved d acidified	/light conditions, Animal Care Fa water ad libitum	, and hou: cility, and 1.	sed in were						
		Extracted m	nolecule	total RNA											
		Extraction p	protocol	Total RNA was (Invitrogen) ac	isolated from cording to the m	cochlea t nanufactur	issues using the re's instructions.	e TriZol re	agent						
		Label		Biotin		ALA /T		an a life a shi a s							
		Laber protot	COI	labeling (Enzo manufacture's	BioArray IVT k instructions (Aff	vit) were vinetrix).	accomplished a	ccording t	to the						
		Hybridizatio	in protocol	Hybridization (/ (Affymetrix Flu manufacture's	Affymetrix Hybrid idics station 40 instructions.	dization o 10) were	ven 640), washi accomplished a	ng, and st ccording t	aining to the						
		Scan protoc	ol .	Arrays were so analysis was p	anned on the A erformed using	Affymetrix the Affyme	GeneChip Scanr etrix software.	ner 3000. I	Image						
		Description Data proces	ssing	NA Scaled to 1500	(Affymetrix soft	ware)									
		Submission Last update	date e date	Oct 16, 2006 Oct 17, 2006											
		Contact nam	ne	Shinichi Somey	а										
		E-mail(s)		someya@wisc.	edu										
		Phone		608-265-5205											
		Fax		608-262-2976											
		URL		http://www.ge	netics.wisc.edu,	faculty/pr	rofile.php?id=140)							
		Department	n name -	University of W Medical Genetic	isconsin-Madiso	n									
		Lah	-	Prolla Lah	.5										
		Street addre	ess	425 Henry Mall	Dr										
		City		Madison											
		State/provin	nce	WI											
		ZIP/Postal c	code	53706											
		Country		USA											
		DI-16													
		Platform ID Series (1)		GPE339 GSE6045 Gene coch	e expression pro lea in DBA/2J mi	ofile of the ce	e age-related hea	aring loss							.
Fertig												😽 You sa	ved: 125.4 m². All us	ers saved: 209,0	43,806 m².
🕂 Start	💽 Posteingan	g - Microsoft	📧 Microsoft	Excel - 170510i	Reference Mana	ager - [R	🕘 GEO Accessio	n viewer	🗿 Micros	oft PowerPoint - [Adobe Ph	otoshop]	0	0.16:46

Gene expression omnibus

🥣 GEO ACCESS	NUT VIEWER - MUZI	атгегох				
Datei Bearbe	iten <u>A</u> nsicht ⊆hr	ronik <u>L</u> esezeich	ien E <u>x</u> tras	Hilfe		
$\langle \rangle \rangle$	C × 🗠	S http://w	ww.ncbi.nlm.r	nih.gov/geo/query/acc	.cgi?view=data&acc=	G5M140222&id=281
🙋 Meist 🔝 r	news 🚺 KEGG 🗋	sektion 🗋 123	3 😼 Ecosia	🕶 myopia 😽 Mail	🚯 GO 🔀 webm	ail 💹 UCSC 🚳 c
W SYBR Gree	n I - Wikipedia, the f	ree en 🖂 🛛 🎖	GEO Acces	sion viewer	S GEO) Accession viewe
#ID DEE =						
#UNTHE -	cignal intend					
#VALUE -	= Affumatric	Present / A	beent es	11		
TD PFF V	ATTE ARS C	ATT	DSENT CA			
1460633 =	+ 579 7	λ				
1460634 a	+ 1709 2					
1460716 a	at 9222 5	. P				
1460717 a	+ 1531 9	P				
1460635 a	t 186.3	Δ.				
1460636 a	t 1204 2	2				
1415734 a	t 12411	3 P				
1415670 a	t 2257	P				
1415735 a	t 4702 8	P				
1415736 a	t 5969	P				
1460637 s	at 5707.9	P				
1415713 a	at 5466.1	. P				
1415671 a	t 5495.3	P				
1415737 a	t 4927.9	P				
1460638 a	t 1462.8	M				
1415738	+ 1028 5	P				

Recent Experiments: Myopia Research

Tissue	Animal	Treatment	Duration	Author
* Retina	Monkey	Lid-fusion	2-4 months	Tkatchenko et al. PNAS 2006; 103:12
* Retina	Mouse	FDM	30min / 4h / 1d	Brand et al. Mol. Vis. 2007; 13
* Retina	KO-mouse	Age-difference WT vs. HM	30d / 42d -	Schippert et al. Mol. Vis. 2009; 15
* Retina	Chick	LIH	1d	<u>Schippert et al.</u> <i>Mol.Vis.</i> 2008; 14
Retinal AC	Chick	LIM and LIH	1d	<u>Ashby et al.</u> <i>IOVS</i> 2010; 51:7
* R/RPE	Chick	FDM	6h / 3d	<u>McGlinn et al.</u> /OVS 2007; 48:8
R/RPE	Chick	LIM and LIH	6h / 3d	<u>R. Stone</u> yesterday
* R/RPE/Ch	Chick	Recovery	1d / 4d	<u>Rada et al.</u> <i>Mol.Vis.</i> 2009; 15
R/RPE/Ch	Chick	Recovery	0h / 6h / 24h	<u>Giummarra et al.</u> ARVO 2010
* RPE/Ch	Marmoset	LIM vs. LIH	92d	Shelton et al. Mol. Vis. 2008; 14
RPE	Albino Chick	WT vs. HM	-	Rymer et al. Exp.Eye Res. 2007; 85
RPE	Chick	LIM	38d	Zhang et al. ARVO 2010
Sclera	Mouse	Age-difference	21d / 56d	<u>Zhou et al.</u> /OVS 2006; 47:5
Sclera	Human	no Treatment	-	<u>Young et al.</u> <i>Mol.Vis.</i> 2004; 10
Scleral FB	Human	Mechanical Stretching	30min / 24h	<u>Cui et al.</u> Exp.Eye Res. 2004; 78

* Reviewed in "Gene profiling in experimental models of eye growth: Clues to myopia pathogenesis". Stone et al., Vis.Res. 2010

Expression pattern comparison

LOG₂ of the mean relative signal intensities

Expression pattern comparison

LOG of the mean relative signal intensities

Data replotted from Ashby et al. IOVS 2010, Schippert et al. Mol. Vis. 2008 and McGlinn et al. IOVS 2007

Overlap between studies

Little overlap between studies so far can be explained by:

• Tissue type

Amacrine cells / Retina / Retina+RPE / Retina+RPE+Choroid / RPE / RPE+Choroid / Sclera

• Methods to induce eye growth / arrest eye growth

Lid suture / Deprivation myopia / Lens induced myopia / Lens induced hyperopia / Recovery / genetically modified animals

• Species

• Data analysis (normalisation, threshold-settings...)

Recent Experiments, Outcomes

Genes identified by lens or deprivation experiments:

"Usual suspects"

- VIP (Tkatchenko et al. *PNAS* 2006, McGlinn et al. *IOVS* 2007, Ashby et al. *IOVS* 2010)
- ZENK or Egr-1 (Brand et al. *Mol. Vis.* 2007, Schippert et al. *Mol. Vis.* 2008, Ashby et al. *IOVS* 2010)
- Ovotransferrin (Rada et al. *Mol. Vis.* 2009)
- Pre-pro glucagon (Schippert et al. *Mol. Vis.* 2008, Ashby et al. *IOVS* 2010)
- FGF2 (Shelton et al. Mol. Vis. 2008)

New candidate genes

- Protein kinase Akt-2 (Brand et al. Mol. Vis. 2007)
- Oxoglutarate dehydrogenase (Schippert et al. Mol. Vis. 2009)
- Angiopoietin 2 (Ashby et al. *IOVS* 2010)
- Avian thymic hormone (Rada et al. *Mol. Vis.* 2009)
- Noggin (Zhang et al. ARVO 2010)
- Bone morphogenetic protein-2 and -7 (Cui et al. *Exp.Eye Res.* 2004, McGlinn et al. *IOVS* 2007, Zhang et al. ARVO 2010)
- Prepro-urotensin II-related peptide (McGlinn et al. IOVS 2007, Schippert et al. Mol. Vis. 2008)

Recent Experiments, outcomes

Unexpected relationships:

- Hint that RPE/choroid in LIH shares similarities to hypoxia-induced pathways (Shelton et al. *Mol. Vis.* 2008)
- Different pathways involved in LIM/LIH and in initiation / sustained eye growth in R/RPE (R.Stone, talk IMC 2010)

Recent Experiments: cochlea after noise trauma

Control versus noise-damaged cochleae: (Margaret Lomax et al. (2001). Noise & Health 3:19-35.)

Early growth response genes:

egr-1

NGF-inducible anti-proliferative protein

c-fos

Problem: Retinal Cell Population is Heterogeneous

Laser Capture Microdissection

1. Draw new element that is to be extracted

2. Initiate laser cutting

3. Catapult cut section into collection tube

Laser Capture Microdissection

Microarray and possibilities beyond Microarray

- Hundreds of potential signals have been identified with Microarrays, we "just" need to make sense of them
- Couple of potential signalling pathways have been proposed
- Concordance between studies is still poor, repetition using the same treatment paradigms is necessary

Next generation sequencing (NGS)

Determines the sequence of thousands of DNA sequences in a single run (High throughput sequencing (35-400bp/transcript based on platform)

PRO:	CON:
- Very sensitive	- Expensive
- Quantitative	- Complex sample preparation
- No knowledge of genome required	- Data analysis very demanding

Copyright 1997-2009 Geospiza, Inc. All Rights Reserved.

geospiza"

Read Processing Strategy

*http://genes.mit.edu/burgelab/mRNA-Seq/

Alternative splicing

Alternative exon

Mutually exclusive exons

Exon skipping: an exon may be spliced out of the primary transcript or retained. This is the most common mode in mammalian pre-mRNAs.

Mutually exclusive exons: One of two exons is retained in mRNAs after splicing, but not both.

Alternative donor site: An alternative 5' splice junction (donor site) is used, changing the 3' boundary of the upstream exon.

Alternative acceptor site: An alternative 3' splice junction (acceptor site) is used, changing the 5' boundary of the downstream exon.

Intron retention: A sequence may be spliced out as an intron or simply retained. This is distinguished from exon skipping because the retained sequence is not flanked by introns. If the retained intron is in the coding region, the intron must encode amino acids in frame with the neighboring exons, or a stop codon or a shift in the reading frame will cause the protein to be non-functional. This is the rarest mode in mammals.

Sequences to Biological Interpretation – Gene Level Expression Values

Reads

>2357 2012 1445 F3 T21102021110100012222022010110002001 >2357 2012 1665 F3 T21110303030212120001202212232122111 >2357 2012 1761 F3 T213102112012103002111012122022023222 >2357 2012 1816 F3 T10022001210300222220222100011122201 >2357 2012 1835 F3 T10112311210021222202201220101321322

Secondary Analysis

Alignments Annotation Summaries

199433 (ed) - 411 197477 has mit 111 (g) 498475002437 mine sequent with 131-36 (g) mit 111 20423 has mit 122 498475022454 mine sequent with 01, (g) mit 111

148235 Balandi 20; MMATDOMERI How Sapars 66/26, mm, mb,26; mm, mb,26; im mb,278, mc.mb,28; Balandi 278 brandi 278 balandi 296, mm mb,29; ib ndt,29; ib ndt,29; ib ndt,29; Balandi 218, balandi 218, Mattalandi 200, mm mb,29; ib ndt,29; ib ndt,29;

Tertiary Analysis

R

Comparison Statistics Clustering Pathway Analysis

Copyright 1997-2009 Geospiza, Inc. All Rights Reserved.

Page 24

GeneSifter – Differentially Expressed Genes

Pairwise Analysis: SO	LID	Inceports. C	should a read for the	nosome scace	er Plot I Volcario Plot J [Results: Export Sav
		Group 1		Gro	up z	
Conditions:		wild-type oocyte	2	Dice	Ir- KO bocyte	
Experiments:		77100, 77101		771	.02, 77103	
Significance:		1.5, t-test	<u>N</u>			
Normalization:		None	3**			
Quality Cutoff:		1				
Data Transformation:		Log Transformed	2			
Show: 20 💌 S	Sort By: Ratio 💌 p Cuto	ff: 0.01 💌	Threshold: 1.5 💌	Search (4	478 results found)	[1 - 20] [21 - 40
1 + 1883.43	p-value Identifier 0.00043 XM 00147665	Gene Name	hypothetical LOC67251	1 (LOC672511)	. mRNA	

Copyright 1997-2009 Geospiza, Inc. All Rights Reserved.

geospiza

Sequences to Biological Interpretation

>2357_2012_1445_F3 T21102021110100012222022010110002001 >2357_2012_1665_F3 T2111033030212120001202212232122111 >2357_2012_1761_F3 T213102112012103002111012122022023222 >2357_2012_1816_F3 T10022001210300222220222100011122201 >2357_2012_1835_F3 T10112311210021222202201220101321322

Secondary Analysis

Alignments Annotation (Gene Model) Summaries

ini.

KARAN MALANA JULY NYYANYADOOLO YA KARANA MALANA MALAN

198025 har off-512 40842002014 some samer soli 521, ptroff-522 14025 har off-226 40842002014 some samer soli 525, ptroff-206 ptroff-206, ptroff-206 ⇒

Tertiary Analysis

Splicing Indicators Gene Viewer

R

Copyright 1997-2009 Geospiza, Inc. All Rights Reserved.

Page 41

geospiza

Differential Splicing

Page 45

Alternative to microarrays

- Can be used to profile mRNA as well as non-protein coding RNAs without prior information
- Can survey the entire transcriptome, including novel, un-annotated regions
- Can determine gene structure and isoform levels by mapping read density across transcript or gene and can use reads to map splice junctions
- Can identify and quantify both rare and common transcripts, with over six orders of magnitude of dynamic range.

techniques of molecular biology can be used to:

- identify (PCR) and characterize genes whose transcription is controlled by specific visual experience (defocus) (northern blot, quantitative PCR)
- identify gene products that could provide potential targets for pharmacological intervention of myopia (microarray)
- survey the entire transcriptome, including novel, un-annotated regions (next generation sequencing)

(not complete)