Color Vision

Nicole Weisschuh Molecular Genetics Laboratory

Lecture "Sensory Systems - Basics and Principles II 05.07.2010

Lecture aims: To understand the following

How dependent are we on color vision?

Imagine you are in a hurry...

... or you are hungry

Color helps!

$$
\begin{aligned}
& \Delta A_{0}
\end{aligned}
$$

Chromatic components

Split the image into...

Achromatic components

How do we see colors?

Photoreceptors

There are two types of photoreceptor cells in the human retina, rods and cones.

Color vision is mediated by cones

Blue cone „S-cone"

Green cone „M-cone"

Distribution and size of photoreceptors in the retina

The cone mosaic of the rod-free inner fovea

Opsin structure

Note: Opsins have a λ max below 300 nm . Retinal has a $\lambda \max$ of $\sim 380 \mathrm{~nm}$. The broad absorbance spectrum of $400-700 \mathrm{~nm}$ is created by the binding of both components. The $\lambda \max$ of the absorbance band depends on the genetically determined aa sequence of the respective opsin and the relationship of the opsin with the chromophore.

Is colour, as we perceive it, mainly a property of physics or biology?

Visible spectrum

Visible light is a small part of the electromagnetic spectrum

Who knows these gentlemen?

Thomas Young 1773-1829

Hermann Ludwig Ferdinand von Helmholtz 1821-1894

Human vision is trichromatic

Additive color mixing (RGB)

Subtractive color mixing (CYMK)

Why is normal human vision trichromatic?

1. Three types of cones

2. Univariance

,I just absorbed 2 photons and I have no idea what their wavelengths are"

What do you think is true?

Absorption spectra

Note: The $\lambda_{\max }$'s are shifted in vivo to 445,540 and 565 nm . This is due to the transmission properties of the intervening ocular media (lens, macular pigment).

Absorption spectra

Trichromacy means our color vision is limited

So, if each photoreceptor is color-blind, how do we see color?

The perceiption of color is created by postreceptoral pathways, but we will come to that later...

Colors as relative responses (ratios)

Yellow light

White light

Color vision deficiencies

Tritan

Google

Visualizing Deuteranopia

\$

\longrightarrow

More color vision deficiencies...

Google
$X X 1$

Consequences of color vision deficiencies

Normal trichromats can distinguish between 150 distinct wavelengths

Protanopes can only distinguish between 21 distinct wavelengths

Deuteranopes can only distinguish between 31 distinct wavelengths

Tritanopes can only distinguish between 44 distinct wavelengths

Why do colors that look different to us appear the same to color deficient individuals?

Consider a green versus a yellow light...

...this is the perception of a deuteranomalous trichromat

Prevalences of color deficiencies

Color vision deficiency	Males	Females
Protanomaly	1%	0.03%
Protanopia	1%	0.02%
Deuteranomaly	5%	0.4%
Deuteranopia	1%	0.01%
Tritanomaly	Rare (if at all)	Rare (if at all)
Tritanopia	0.008%	0.008%

Genetic background of color vision

Spectral tuning sites shift the λ max of the respective opsin

Alanine

A180S
P
O
L
A
R

Phenylalanine

F277Y

green cone opsin

Alanine

A285T

red cone opsin all with OH group

Why are the M - and L-cone opsins so similar?

Evolution of trichromacy

The selective advantage of trichromatic vision is thought to be the ability to detect ripe fruits against a background of dense green foliage.

No red-green discrimination

Red-green discrimination

Red and green cone opsin genes

Crossing over

Hybrid gene
OR

Loss of gene
OR

Gene duplication

Red and green color deficiencies

Protanope

Deuteranope

Protanomalous

Deuteranomalous

Diagnosing color vision deficiencies

A quick color vision test...

Diagnosis of red-green color deficiencies: Anomaloscope

Yellow intensity
Deuteranope match

Postreceptoral color vision

Who knows this gentleman?

Ewald Hering 1834-1918

Reds can get bluer or yellower but not greener

Yellows can get greener or redder but not bluer

Greens can get bluer or yellower but not redder

Blues can get greener or redder but not yellower

The color opponent theory of Hering

Four „Urfarben" are arranged in two opponent processes

Opponent channels

Illustration of how the opponency channels work in your perception

- Here are the enhanced edges resulting from your y-b chromatic channel
- Here are the enhanced edges resulting from your r - g chromatic channel
- Here are the enhanced edges
 resulting from your r - g chromatic channel

The artist Van Gogh often used opponent colors to enhance them

How are cone outputs organised at subsequent stages of visual processing?

Opponent channels

So far, we've mainly been talking about the colours of isolated patches of light. But the colour of a patch depends also upon:

- What precedes it (in time) COLOR AFTER-EFFECTS
- What surrounds it (in space) COLOR CONSTANCY

Color after-effect: Successive contrast

Color after effect: The lilac chaser
$+$

Color vision is a two stage model

- Early processing is trichromatic
- Later on it is opponent processing

Ganglion and bipolar cells of trivariant color vision

Bistratified S cone ON cell

Opponent receptive fields in our retina

The physiological basis of opponency: opponent retinal ganglion cells

Color constancy

Color constancy

The fovea is optimized for highest spatial resolution

„private line" between cones, bipolars and ganglion cells

12 mm from fovea

Color perception

The LGN is a distinctively layered structure

Correspondence between ganglion cells and LGN cells

Retinal ganglion cells	LGN cells	Type of information
Parasol ganglion cells	Layers 1\&2: Magnocellular cells	perception of form, movement, depth, and brightness
Midget ganglion cells	Layers 3-6: Parvocellular cells	perception of color
Small bistratified ganglion cells	In between layers 1-6: Koniocellular cells	perception of color

Interactive Stroop Effect Experiment

Red	Green	Blue	Yellow	Pink
Orange	Blue	Green	Brown	Black
Green	Yellow	Pink	Red	Orange
Brown	Red	Black	Blue	Yellow
Black	Orange	Green	Brown	Red

Interactive Stroop Effect Experiment

Blue	Pink	Black	Red	Brown
Brown	Red	Blue	Green	Orange
Yellow	Blue	Red	Orange	Black
Brown	Red	Green	Black	Red
Red	Pink	Blue	Green	Black

So, what does this all mean?

It means that color perception is relative and not absolute. And, since color perception is relative, we are always subject to these effects. In other words, it's in our mind not our eye.

